Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing
نویسندگان
چکیده
A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.
منابع مشابه
Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing.
Most of the artificial superhydrophobic surfaces that have been fabricated to date are not biodegradable, renewable, or mechanically flexible and are often expensive, which limits their potential applications. In contrast, cellulose, a biodegradable, renewable, flexible, inexpensive, biopolymer which is abundantly present in nature, satisfies all the above requirements, but it is not superhydro...
متن کاملHierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials
Hierarchically structured flower leaves (petals) of many plants are superhydrophobic, but water droplets do not roll-off when the surfaces are tilted. On such surfaces water droplets are in the "Cassie impregnating wetting state", which is also known as the "petal effect". By analyzing the petal surfaces of different species, we discovered interesting new wetting characteristics of the surface ...
متن کاملA Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces
A facile in situ and UV printing process was demonstrated to create self-cleaning synthetic replica of natural petals and leaves. The process relied on the spontaneous migration of a fluorinated acrylate surfactant (PFUA) within a low-shrinkage acrylated hyperbranched polymer (HBP) and its chemical immobilization at the polymer-air interface. Dilute concentrations of 1 wt. % PFUA saturated the ...
متن کاملShrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics
Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this s...
متن کاملScaling Up Nature: Large Area Flexible Biomimetic Surfaces.
The fabrication and advanced function of large area biomimetic superhydrophobic surfaces (SHS) and slippery lubricant-infused porous surfaces (SLIPS) are reported. The use of roll-to-roll nanoimprinting techniques enabled the continuous fabrication of SHS and SLIPS based on hierarchically wrinkled surfaces. Perfluoropolyether hybrid molds were used as flexible molds for roll-to-roll imprinting ...
متن کامل